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The dynamic storage capacity of a periodically heated slab
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Abstract

The well-known problem of evaluating the dynamic heat storage capacity of a 1D slab is analysed extending the results to the more general case
of periodic excitation profiles of any form. Equations in time and frequency domain to calculate the storage capacity are obtained and applied to
some cases, showing that harmonic heating is not the most efficient way to store energy in finite and semi-infinite slabs. Quantitative comparisons
show that, for slab of finite thickness, intermittent heating may yield up to 40% more heat storage capacity (and up to 52% for semi-infinite slab)
than harmonic heating.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dynamic storage capacity of a heated stab is a typical
conduction problem with important practical applications, for
example in conjunction with the energy saving efforts for pas-
sive buildings [1,2] or laser heating of materials [3], etc. As
pointed out by Magyari and Keller [4], the heat storage capac-
ity of a slab excited harmonically to one end and insulated to the
other, shows, as a function of its thickness, a curve that reaches
a maximum and then it tends to the asymptotic value of the
semi-infinite medium in an oscillating manner. In [4] the first
and subsequent relative maxima where carefully analysed (also
for a non-Fourier conduction equation) and connected to the co-
herent superposition of two basic “thermal waves” propagating
in opposite directions. The existence of the above mentioned
absolute maximum shows that an optimum slab size exists (de-
pending on the frequency of the exciting input) that maximises
the energy storage. However, harmonic heating is not a com-
mon case in practical situations, whereas periodic heating of
arbitrary shape is certainly more common. This rises the ques-
tion whether a different heating profile can increase the heating
storage and how the above mentioned optimum slab thickness
may depend on the heating profile. The scope of the present
work is to analyse the more general case of periodic (not nec-
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essarily harmonic) heating, and to find a way to compare the
efficiency of different heating modalities. To this aim, equations
in frequency and time domain are developed and used to evalu-
ate the instantaneous energy content and the maximum energy
storage for generally periodic heating. In the following analysis
it is assumed that “steady” periodic regime is always reached
(i.e. memory of the initial state is lost and all non-periodic tran-
sient phenomena are absent). Moreover, only the simplest case
of imposed periodic temperature to a slab end and adiabatic
condition on the other end are considered here, as other kind
of conditions (convection, imposed periodic flux etc.) can be
introduced using the substantially same method proposed here.

2. Basic equations

Starting with the energy conservation equation for a homo-
geneous incompressible 1D slab:

∂T

∂t
= α

∂2T

∂x2
(1)

define the temperature Fourier transform as:

T (t, x) = Ta(x) +
+∞∫

−∞
S(x,ω)eiωt dω

where Ta is the time-average temperature that satisfies the
steady version of Eq. (1) and, for the present case, it is a con-



G.E. Cossali / International Journal of Thermal Sciences 46 (2007) 342–348 343
Nomenclature

c specific heat
C dynamic capacity in frequency domain
d slab thickness
h function
k thermal conductivity
K dynamic capacity in time domain
m integer number
q heat flux
Q heat storage
r function
S temperature Fourier transform
t time
T temperature
T period
U internal energy
u internal energy fluctuation
x coordinate

Greek symbols

α thermal diffusivity: k
ρc

β constant
δ Dirac-delta function
ε effusivity
η square of non-dimensional slab thickness: η = ξ2

ξ non-dimensional slab thickness
τ, σ,μ,χ non-dimensional times
κ,Ψ,Λ non-dimensional functions
ρ density
ω frequency

Indexes
a average
d slab of finite thickness
h harmonic
i intermittent
0 slab surface at x = 0
∞ semi-infinite wall
stant or a linear function of x. The following ordinary differen-
tial equation is then found (where apex means derivation respect
to x):

iωS(x,ω) = αS′′(x,ω)

The general solution is:

S(x,ω) = S+(ω)eβx + S−(ω)e−βx

with β =
√

iω
α

, and S±(ω) are arbitrary functions of ω. Con-
sider now the following boundary conditions: periodic excita-
tion (not necessarily harmonic) at one boundary (x = 0) and
adiabatic insulation at the other one (x = d):

T (0, t) = T0(t); q(d, t) = 0

where T0(t) is an arbitrary periodic function (with period T ).
These conditions extend to arbitrary periodic excitation those
studied in [4]. It is then easy to see that Ta(x) = Ta and that:

S(0,ω) = S0(ω); S′(d,ω) = 0

where S0(ω) is defined by the equation T0(t) = Ta(0) +∫ +∞
−∞ S0(ω)eiωt dω. Then, the solution of the differential prob-

lem is:

S(x,ω) = S0(ω)
cosh(β(x − d))

cosh(βd)
(2)

The particular case of a semi-infinite slab will be also analysed
and, in this case, the solution of the related problem is simply:

S∞(x,ω) = S0(ω)e−βx

The total internal energy stored into one square meter of slab at
time t can be evaluated, for a finite slab, through the integral:

Ud(t) = Ud,a + ud(t) = ρc

d∫
Ta(x)dx + ρc

d∫
T ′(x, t)dx
0 0
where T ′(x, t) = T (x, t) − Ta(x) and ud(t) is the internal en-
ergy fluctuation around the time average Ud,a . Using the result
(2) we obtain:

ud(t) = ρc

+∞∫
−∞

S0(ω)
tanh(βd)

β
eiωt dω (3)

For a semi-infinite slab (d → ∞) the same calculation yields:

u∞(t) = ρc

+∞∫
−∞

S0(ω)
1

β
eiωt dω (4)

3. The dynamic heat capacity

There is a need to define the dynamic heat capacity of a 1D
slab in a general sense. The definition of the “static” heat ca-
pacity of a solid incompressible body can be written as:

Cs = dQ

dT

where the ratio is taken over a quasi-static process. For a dy-

namic process, the ratio Q̇

Ṫ
= dQ

dT
has no longer a univocal

meaning, as the body temperature is not univocally defined.
Consider now the 1D slab harmonically heated, we can then
set: T0(t) = T0e

iωt and from Eq. (3) one can write:

u(t) = ρcd
tanh(βd)

βd
T0e

iωt = ρc
tanh(βd)

β
T0(t)

thus, the heat flux at x = 0 can be written as:

Q̇ = u̇ = ρc
tanh(βd)

β
Ṫ0(t)

and thus a generalisation of the concept of heat capacity may
be taken as the ratio between the (complex) surface heat flux
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and the (complex) time derivative of the surface temperature,
yielding:

Cd(ω) = ε
tanh(

√
iω
α

d)
√

iω
(5)

where ε = √
ρck is the effusivity (see [5] for a definition), and

Cd(ω) is a complex function of ω, sometime termed “complex
heat capacity” [6,7]. This definition can then be extended to the
periodic (non-harmonic) heating of the 1D-slab, taking the ratio
of the Fourier transforms of u̇(t) and Ṫ0(t), obtaining exactly
the same result (5).

Generally:

u̇d (t) = q0(t) =
+∞∫

−∞
Cd(ω)iωS0(ω)eiωt dω

and from the convolution theorem [9]:

u̇d (t) = 1

2π

+∞∫
−∞

Kd(t − s)Ṫ0(s)ds (6)

with: Kd(t) = ∫ +∞
−∞ Cd(ω)eiωt dω representing the dynamic

heat capacity in time domain. The definitions are clearly re-
ferred to a unit of surface extension (1 m2) and in the limiting
case of ω → 0 the dynamic heat capacity in frequency and time
domain take the reasonable forms:

Cd(ω) = ε
tanh(

√
iω
α

d)
√

iω
→ ρcd

Kd(t) → 2πρcd δ(t)

consistent with the classical definition of “static” heat capacity.
It is interesting to observe that the dynamic heat capacity of a
semi-infinite slab is then:

C∞(ω) = ε
1√
iω

and

K∞(t) = ε

+∞∫
−∞

1√
iω

eiωt dω =
{

ε
2
√

π

|t |1/2 for t > 0

0 for t < 0
(7)

(see appendix). It is also clear that the instantaneous energy
content of a slab (finite or semi-infinite) can be obtained, dis-
regarding the time-averaged value, through the use of Kd (or
K∞) as:

ud(t) = 1

2π

+∞∫
−∞

Kd(t − s)T0(s)ds (8)

u∞(t) = 1

2π

+∞∫
−∞

K∞(t − s)T0(s)ds (9)
4. The dependence of the storage capacity on the heating
profile

The heat storage capacity of the 1D slab can be defined as
follows. Consider the total internal energy fluctuation defined
as:

u(t) = U(t) − Ua

where Ua = 1
T

∫ T
0 U(t)dt (T is the period) is the time-average

energy content of the slab, the difference between the maximum
and the minimum values of u(t) is then defined as the storage
capacity. Eqs. (3), (4) and (8), (9) allow to evaluate the instanta-
neous energy content of the slab and can be used alternatively,
as the first ones work in the frequency domain while the others
work in time domain, and for different cases one can be better
used than the other. The case of semi-infinite slab will be firstly
considered; as it will become evident later, the problem of the
slab of finite thickness can be naturally connected to the results
for the semi-infinite one.

4.1. The semi-infinite slab

Consider the reference case of harmonic heating (with sur-
face temperature fluctuation amplitude equal to T0), the instan-
taneous energy content is then:

u∞(t) = U∞(t) − U∞,a

= 1

2π

+∞∫
−∞

K∞(t − s)T0(s)ds

= 2ε
√

π
1

2π
Re

{ t∫
−∞

1

|t − s|1/2
T0e

iωs ds

}

= ε√
2

T0√|ω|
(
cos(ωt) + sin(ωt)

)
The maximum of U∞(t) is obtained for tω = π

4 and the mini-
mum for tω = 5π

4 , then

max
{
U∞(t)

} = ε
T0√|ω| ; min

{
U∞(t)

} = −ε
T0√|ω|

and the heat storage capacity is Qh,∞ = [max{U∞(t)} −
min{U∞(t)}] = 2ε√

ω
T0 =

√
2ε

√
T√

π
T0, see also [4].

As an example of the use of the equation in time domain it
is interesting to evaluate the storage capacity of a semi-infinite
slab subject to an intermittent heating defined as:

T0(t) =
{

2T0 for 0 < t < t0

0 for t0 < t < T (10)

noticing that the temperature excursion and period are equal
to those of the reference (harmonic) case. The average surface
temperature is then:

Ta = 2T0
t0

T = 2T0τ0

Starting again from Eq. (9) and using (7) with 0 < t < T , the
instantaneous energy content of the semi-infinite slab is
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u∞(t) = U∞(t) − Ua

= 1

2π

+∞∫
−∞

K∞(t − s)T ′
0(s)ds

= ε√
π

t∫
−∞

1

|t − s|1/2
T ′

0(s)ds

= ε√
π

∞∑
k=0

−kT∫
−(k+1)T

1

|t − s|1/2
T ′

0(s)ds

+ ε√
π

t∫
0

1

|t − s|1/2
T ′

0(s)ds

where T ′
0(t) = T0(t) − Ta . After some manipulations the first

integral becomes:

r(t) =
∞∑

k=0

−kT∫
−(k+1)T

1

|t − s|1/2
T ′

0(s)ds

= 2T0

∞∑
k=0

{
2
[√

t + (k + 1)T − √
t − t0 + (k + 1)T

]
− 2τ0

[√
t + (k + 1)T − √

t + kT
]}

= 4T0
√
T

{
ζ

(
−1

2
, τ + 1

)
− ζ

(
−1

2
, τ + 1 − τ0

)
+ τ0

√
τ

}
with τ = t/T and ζ(s, a) is the Hurwitz zeta function [8]. The
second integral is instead:

h(t) =
t∫

0

1

|t − s|1/2
T ′

0(s)ds

=
{

4T0
√
T (1 − τ0)

√
τ for τ < τ0

4T0
√
T [√τ(1 − τ0) − √

τ − τ0] for τ > τ0

and u∞(t) = ε√
π
{r(t) + h(t)}. Fig. 1 shows a computation of

U(t) − Umin for different values of the parameter τ0 and it can
be noticed that the amplitude fluctuation depends on τ0 and it
may become larger that the corresponding fluctuation for the
harmonic case. It is easy to show that r ′(t = t0) < −h′(t =
t0) = +∞, and then the maximum of U∞ is located at t = t0
whereas the minimum is located at t = 0, then

Qi,∞ = Umax − Umin

= ε√
π

{
r(t0) − r(0) + h(t0) − h(0)

}
= 2

√
2

{
ζ

(
−1

2
, τ0 + 1

)
+ ζ

(
−1

2
,1 − τ0

)
− 2ζ

(
−1

2
,1

)
+ √

τ0

}
Qh∞

= Ψ (τ0) Qh∞
Fig. 1. Instantaneous internal energy content in a semi-infinite slab for intermit-
tent (with different values of τ0) and harmonic heating.

Fig. 2. Ratio between the heat storage capacity of a semi-infinite slab under in-

termittent heating and that of the same slab harmonically heated (Ψ = Qi,∞
Qh,∞ ).

Fig. 2 shows the numerical evaluation of the function Ψ (τ0).
It is clear that the storage capacity is larger than that obtained
by harmonic heating, as long as 0.133 � τ0 � 0.867, and for
τ0 = 0.5 the storage capacity reaches its maximum value equal
to 1.52 times that of a harmonically heated (with the same am-
plitude and period) semi-infinite slab. This comparison shows
that the efficiency of a semi-infinite slab as heat storage depends
on the heating time profile and is not optimised for harmonic in-
put.

4.2. The slab of finite thickness

Consider now a slab of finite thickness d , then the harmonic
heating, that as above mentioned was treated in detail in [4],
can be analysed by using the equation in the frequency domain
(3), by setting

S0(ω) = T0δ(ω − ω0)

The instantaneous energy content is then:

ud(t) = ρcd Re

{ +∞∫
S0(ω)

tanh(βd)

βd
eiωt dω

}

−∞
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= εT0√
2
√

ω

[{ {sinh(2ξ) + sin(2ξ)}
cosh(2ξ) + cos(2ξ)

}
cos(ωt)

−
{ {sin(2ξ) − sinh(2ξ)}

cosh(2ξ) + cos(2ξ)

}
sin(ωt)

]
with ξ = d

√
ω
2α

, the relative maximum and minimum are found

for:

tan(ωt1,2) = sinh(2ξ) − sin(2ξ)

sinh(2ξ) + sin(2ξ)

ωt1 = − arctan

(
sin(2ξ)

sinh(2ξ)

)
− 3

4
π

ωt2 = − arctan

(
sin(2ξ)

sinh(2ξ)

)
− 1

4
π

and after some manipulation the heat storage can be written in
the more convenient form:

Qh,d = ud(t1) − ud(t2)

= 2εT0
√

(cosh(2ξ) − cos(2ξ))√
ω

√{cosh(2ξ) + cos(2ξ)}

=
√

(cosh(2ξ) − cos(2ξ))√
cosh(2ξ) + cos(2ξ)

Qh,∞

Magyari and Keller [4] have shown that the first relative (and

absolute) maximum of the function Λh(ξ) =
√

(cosh(2ξ)−cos(2ξ))√
cosh(2ξ)+cos(2ξ)

is reached at ξ = 1.18251 and its value is 1.14299.
Consider now the case of the generally periodic heating. The

function Kd can be written in a more convenient form using the
convolution theorem [9]:

Kd(t) = ε

+∞∫
−∞

tanh(βd)√
iω

eiωt dω = 1

2π

+∞∫
−∞

K∞(t − s)kd(s)ds

where

kd(t) =
+∞∫

−∞
tanh(βd)eiωt dω; K∞(t) = ε

+∞∫
−∞

1√
iω

eiωt dω

The instantaneous energy content of the slab can be written as:

ud(t) = 1

2π

+∞∫
−∞

Kd(t − s)T0(s)ds

= 1

2π

+∞∫
−∞

[
1

2π

+∞∫
−∞

K∞(t − s − p)T0(s)ds

]
kd(p)dp

= 1

2π

+∞∫
−∞

u∞(s)kd(t − s)ds

and the function kd(t) = ∫ +∞
−∞ tanh(βd)eiωt dω, which is inde-

pendent of the particular heating profile, allows to relate the
results obtained for the semi-infinite slab to that of the finite
one (under the same heating input). The properties of the func-
tion kd(t) are better analysed in Appendix B, and from them it
is possible to evaluate the slab instantaneous energy content as:

ud(t) = 1

2π

∞∫
0

u∞
(

(χ − μ)
d2

2α

)
κ∗
d (μ)dμ + u∞(t)

with χ = t 2α

d2 . A further simplification can be obtained by using
the periodicity of the function U∞(t):

u∞(t) = u∞(t + mT ) = u∞(σ + mT ∗) for m integer

with T ∗ = T 2α

d2 ; defining:

κ̂T (μ) =
∞∑

k=0

κ∗
d

(
μ + (k + 1)T ∗)

it is easy to show that

ud(t) =
∞∑

k=0

1

2π

T ∗∫
0

u∞
(
p − (k + 1)T ∗)

× κ∗
d

(
χ − p + (k + 1)T ∗)dp

+ 1

2π

χ∫
0

u∞
(

σ
d2

2α

)
κ∗
d (χ − σ)dσ + u∞(t)

= 1

2π

T ∗∫
0

u∞(σ )
{̂
κT (χ − σ)

+ H(χ − σ)κ∗
d (χ − σ)

}
dσ + u∞(t)

= 1

2π

T ∗∫
0

u∞(σ )K̂T (χ − σ)dσ + u∞(t) (11)

where:

H(σ) =
{

1 for σ > 0

0 for σ < 0

K̂T (χ − σ) = κ̂T (χ − σ) + H(χ − σ)κ∗
d (χ − σ)

The function κ∗
d (σ ) is independent of the period T , whereas

K̂T (σ ) depends explicitly on T . Eq. (11) allows, once that
K̂T (μ) has been numerically evaluated, to calculate the instan-
taneous energy content for any temperature fluctuation profile
with period T . As a test, the harmonic heating case was con-
sidered, using Eq. (11) the heat storage was calculated and
the results show an agreement with the analytical solution (see
Fig. 3) which is only limited by the chosen integration step.

Eq. (11) was then applied to the intermittent heating case
(Eq. (10)), by analogy with the harmonic case, the non-

dimensional slab thickness was defined as: ξ = d
√

2π
2αT . The

ratio between the heat storage capacity of a slab of finite thick-
ness d and the corresponding heat storage of infinite slab sub-
ject to the intermittent heating (Λi(ξ) = Qi,d

Qi,∞ ) is reported in
Fig. 4 for different values of the parameter τ0. The maximum
capacity is always larger than that of the semi-infinite medium,
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Fig. 3. Ratio between the heat storage capacity of a finite slab and that of the
semi-infinite slab under harmonic heating, evaluated through Eq. (11) and ana-

lytically by Λh = Qh,d
Qh,∞ =

√
(cosh(2ξ)−cos(2ξ))√
cosh(2ξ)+cos(2ξ)

.

Fig. 4. Ratio between the heat storage capacity of a finite thickness slab and

that of a semi-infinite one under intermittent heating (Λi = Qi,d
Qi,∞ ).

but the maximum is reached for different values of the thick-
ness and reaches different values. Fig. 5 shows the values of the
“optimum” non-dimensional slab thickness as a function of τ0.
It is also interesting to consider the ratio between the maximum
heat storage capacity reached with intermittent heating (for dif-
ferent τ0), and the maximum reached by harmonic heating (with
the same period and amplitude). Fig. 6 shows the results and it
should be noticed that the maximum of the heat storage is re-
ferred to the optimum slab thickness which is different for each
excitation profile. The intermittent heating becomes better than
the harmonic one only when 0.81 � τ0 � 0.19, and for τ0 = 0.5,
the maximum heat storage capacity for the intermittent heating
is 40% larger than that obtained by harmonic heating. As a final
remark, it may be noticed that for very high frequencies, possi-
ble non-Fourier effects may become important and in such case
the hyperbolic version of the heat equation can be used (as in
[4], see also [10]), although the expected very low value of the
relaxation time for common materials may fade the interest of
this case for practical applications.
Fig. 5. Non-dimensional slab thickness for maximum heat storage capacity un-
der intermittent heating.

Fig. 6. Ratio between the maximum heat storage capacity of a finite thickness
slab under intermittent heating and that of a slab harmonically heated.

5. Conclusions

The general case of periodic (not necessarily harmonic)
heating of finite and semi-infinite slab was analysed in terms
of heating storage. Equations to calculate the heat storage in
time and frequency domain were obtained. For a slab of finite
thickness, the instantaneous energy content was linearly related
to the analogous content for a semi-infinite slab. As for the har-
monic heating, an optimum slab thickness exists that maximises
the heat storage capacity and it depends on the heating profile
and the heating period. It was found that the harmonic heating
is not the optimum one, in terms of heat storage, as intermit-
tent heating (with the same heating period and amplitude) may
yield a maximum heat storage up to 1.40 times (and up to 1.52
times for the semi-infinite slab) that obtained by harmonic heat-
ing . Moreover, for intermittent heating, an analytic dependence
of the heat storage on the shape parameter τ0 was fund. The
analysed case of intermittent heating then revealed that the op-
timum heat storage and slab thickness depend on the heating
profile.
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η

Appendix A

In time domain, the dynamic heat capacity of a semi-infinite
slab is represented by the function:

K∞(t) = ε

+∞∫
−∞

1√
iω

eiωt dω

noticing that:

√
iω =

⎧⎨⎩
(1+i)√

2

√|ω| for ω > 0

(1−i)√
2

√|ω| for ω < 0

the integral becomes:

g(t) =
+∞∫

−∞

1√
iω

eiωt dω

=
√

2

(1 − i)

0∫
−∞

1√|ω|e
iωt dω +

√
2

(1 + i)

+∞∫
0

1√|ω|e
iωt dω

= 1√
2

−∞∫
−∞

1√|ω|e
iωt dω + 2√

2

[ ∞∫
0

1√|ω| sin(ωt)dω

]

Remembering that (see [9])

∞∫
−∞

1√|ω|e
iωt dω =

√
2π

2

1

|t |1/2

∞∫
0

1√|ω| sin(ωt)dω =
√

2π

2

t

|t |3/2

the following result stems:

K∞(t) = ε

+∞∫
−∞

1√
iω

eiωt dω =
{

ε
2
√

π

|t |1/2 for t > 0

0 for t < 0

Appendix B

Introducing the non-dimensional variables: η = ωd2

2α
= ξ2

and σ = 2αt

d2 and defining the non-dimensional functions:

κe∗
d (σ ) = 2

∞∫
0

sinh(2
√

η ) − cosh(2
√

η ) − cos(2
√

η )

[cosh(2
√

η ) + cos(2
√

η )] cos(ησ )d

κo∗
d (σ ) = −2

∞∫
0

sin(2
√

η )

[cosh(2
√

η ) + cos(2
√

η )] sin(ησ )dη
with:

κe∗
d (−σ) = κe∗

d (σ ); κo∗
d (−σ) = −κo∗

d (σ )

and noticing that:

2

∞∫
0

sinh(2
√

η ) cos(ησ )

[cosh(2
√

η ) + cos(2
√

η )] dη

= 2

∞∫
0

sinh(2
√

η ) − cosh(2
√

η ) − cos(2
√

η )

[cosh(2
√

η ) + cos(2
√

η )] cos(ησ )dη

+ 2πδ(σ ) = κe∗
d (σ ) + 2πδ(σ )

the function kd(t) can be written as:

kd = 2α

d2
κd(σ )

= 2α

d2

∞∫
0

2
sinh(2

√
η ) cos(ησ ) − sin(2

√
η ) sin(ησ )

[cosh(2
√

η ) + cos(2
√

η )] dη

= 2α

d2

{
κe∗
d (σ ) + κo∗

d (σ ) + 2πδ(σ )
}

From the observation that for σ > 0: κe∗
d (σ ) = κo∗

d (σ ) we have:

κd(σ ) = κ∗
d (σ ) + 2πδ(σ ) = κe∗

d (σ ) + κo∗
d (σ ) + 2πδ(σ )

κ∗
d (σ ) =

{
2κe∗

d (σ ) for σ > 0

0 for σ < 0
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